Course Type	CourseC ode	NameofCourse		Т	Р	Credit
DE	NFMD511	Combustion Science	3	0	0	3

Prerequisites: Basics of Thermodynamics, Fluid Mechanics, Heat & Mass Transfer.

CourseObjective	
The course aimstofamiliarize the students with	
laminar and turbulent homogenous combustion	
• liquid fuel combustion, and	
• solid fuel combustion.	
LearningOutcomes	
Attheend of the course, students will be	

- aware of the additions to be made in thermo-fluid governing equations to address combustion.
- able to analyze & comprehend the physicochemical aspects of combustion.

Unit No.	TopicstobeCovered	Lecture Hours	LearningOutcome
1	Introduction to the complexity of combustion, Discussion on the homogenous and heterogenous combustion.	3	Understanding combustion phenomena
2	Stoichiometry, Combustion thermodynamics: First law and Second law, Adiabatic Flame Temperature, Product in Equilibrium and effect on Adiabatic Flame temperature.	5	Thermodynamics of combustion, Maximum temperatures in combustion
3	Combustion kinetics, Governing equations ofmulti-component systems: Constant pressure reactor, Constant volume reactor, Well-stirred reactor, Plug flow reactor.	9	Governing equations of multi-component reactors. Combustion kinetics and approaches to simplify their analysis
4	Laminar premixed combustion: Deflagration and Detonation, Premixed flame theories, Variation of laminar flame speed with fuel and preheat temperatures, Flammability limits, Flame stabilization, Ignition. Turbulent premixed combustion regimes.	9	Critical parameters of laminar premixed combustion, Physics of laminar and turbulent premixed combustion
5	Homogenousnon-premixedcombustion:Diffusion flamejets, laminardiffusion-flamelength, andflamecorrelations.length	7	Critical parameters of laminar non-premixed combustion, Physics of laminar and turbulent non- premixed combustion

6	Solid fuel thermal decomposition: Single film	9	Details about solid-fuel's
	and Two film combustion models, Analytical		thermal decomposition:
	combustion models: Fixed core model,		moisture-evaporation,
	Shrinking core model, Random pore model,		pyrolysis, gasification &
	Devolatilization, Mass transfer during moisture		combustion.
	evaporation, Effect of particle size in the		Details about droplet
	thermal decomposition of coal.		combustion.
	Droplet evaporation and combustion.		
	Total	42	

TextBook:

1. An Introduction to Combustion: Concepts and Application, McGraw Hill Education, 3rd Ed., *Author*: Stephen R. Turns.

ReferenceBooks:

- 1. Principles of Combustion, Wiley India Pvt. Ltd., 2nd Ed., *Authors*: Kenneth Kuo.
- 2. Combustion, Academic Press, Authors: Irvin Glassman